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We are not running out of fossil fuels

Global Primary Energy Supply by Fuel*:
2002 2030
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Departures in temperature in °C (from the 1961-1990 average)

The world is warming
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CO, release rises with per capita GDP
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Predicted increase in global mean
temperature due to CO, accumulation

Annual average surface air temperature change from HadCM3 1S92a
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Potential of underused renewable
energy sources
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~26,000 km? of photovoltaic devices
would meet US energy needs
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Sequestration vision

Central power plants
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1000 M

The Sleipner Experiment

1 million tons/y; capacity 600 B tons
7000 such sites needed
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Combustion of biomass provides
carbon neutral energy
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90,000 TW of energy arrives on the earths
surface from the sun

Water
70.9%

Land
29.0%

Amount of land needed for 13 TW at 1% efficiency
5% of land
650 MHa



>2% yield is feasible

Yield of 26.5 tons/acre observed by Young &
colleagues in Illinois, without irrigation

Courtesy of Steve Long et al




Land Usage

Nonarable Other crops
6.9%

34.4%
Forest &
Savannah
30.5%
Cereal
4.6% Pasture & Range

23.7%

AMBIO 23,198 (Total Land surface 13,000 M Ha)



Types of biofuels

» Solid, burned directly
» Diesel

* Sugar to ethanol

» Cellulose to ethanol



Some plants accumulate oil

(B) Triacylglycerol




Billion gallons

Limited potential of biodiesel

CH3O%\/\/\/\/\/\/\/\/\/ Biodiesel
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65 biodiesel companies in operation, 50 in construction 2006



Qil palm is highly productive

(Best yields ~ 10 tonnes/HA)




Greenfuel bioreactor

http://news.com.com/Photos+Betting+big+on+biodiesel/2009-1043_3-5714336.html?tag=st.pr



NCGA US Corn Grain Ethanol Plants

AS OF: March 2006

‘ In operation

‘ Under construction
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A DOE Ethanol Vision
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Steps in cellulosic ethanol production

Enzyme
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From: Breaking the Biological Barriers to Cellulosic Ethanol



- But, converting

The challenge is efficient conversion

» Burning switchgrass (10
t/ha) yields 14.6-fold
more energy than input
to produce*

Other

Steam Transport

Biomass

Grinding

switchgrass to ethanol
calculated to consume
45% more energy than

produced Energy consumption

Electricity

*Pimentel & Patzek, Nat Res Res 14,65 (2005)



Plants are mostly composed of sugars

$3 nm

Section of a pine board Polymerized glucose



Lignin occludes polysaccharides

Cellulose
Hemicellulose

Lignin



Effect of lignin content on enzymatic
recovery of sugars from Miscanthus
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Lignin biosynthesis
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Irregular xylem (irx) mutants

Turner and Somerville Plant Cell 9,689



Lignin is covalently linked to
hemicellulose (xylans)
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A cleavable lignin precursor would
fundamentally alter preprocessing

pinoresinol

rosmarinic acid



Cellulose is recalcitrant to hydrolysis

NREL



Possible routes to improved catalysts

- Explore the enzyme systems
used by termites (and
ruminants) for digesting
lignocellulosic material

+ Compost heaps and forest
floors are poorly explored

» Invitro protein engineering of
promising enzymes
* Develop synthetic organic

catalysts (for polysaccharides
and lignin)




Some cellulytic enzymes are components of a
"molecular machine”

Cellulosome

Enzymatic subunits

__ Catalytic
Module
Dockerin

<+ [nteraction
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From: Breaking the Biological Barriers to Cellulosic Ethanol



Fermentation of all sugars is essential

Hemi
cellulose

Typical grass
composition
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Steps in cellulosic ethanol production
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Nature offers many alternatives to
ethanol

* Plants, algae, and bacteria
synthesize alkanes,
alcohols, waxes

* Production of hydrophobic

O
\,/\\/\/\//\/\//\//\/)LOH
1-Fatty acid (C,,)

compounds would reduce l 0
toxicity and decrease the W\AH
energy required for l

dehydration

n-Alkane (Cop-1)



Summary of priorities

* Modify plant composition to minimize
energy required for depolymerization

» Identify or create more active catalysts
for conversion of biomass to sugars

- Develop industrial microorganisms that
ferment all sugars

+ Develop new types of microorganisms that
produce and secrete hydrophobic
compounds



US Biomass inventory = 1.3 billion tons

Whea:r straw
6.1% SOX
6.27%

Cr'o% ré%/sidues

Corn stover
19.9%

Grains
5.2%

Manure
4.1%

Urban waste

Perennial crops 2.9%

35.2% Forest

12.8%

From: Billion ton Vision, DOE & USDA 2005



Effect of 50% stover removal on corn

grain yields in eastern NE.
(120kg N/ha)

12000 -
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10000 1| | ®m 50% removed

8000 -
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4000 -

2000 -

2000 2001 2002 2003 2004

K. Vogel et al., unpublished



Prospective energy crops have not been
subject to intensive breeding

Gt

Miscanthus sp. Switchgrass (Panicum virgatum)

Courtesy of Steve Long & Emily Heaton. USDA-NRCS PLANTS Database / Hitchcock, A.S. (rev. A. Chase).
1950. Manual of the grasses of the United States. USDA Misc. Publ. No. 200. Washington, DC.



Harvesting Miscanthus

http://bioenergy.ornl.gov/gallery/index.html



Perennials have more photosynthesis

Miscanthus x
Ogiganteus

10

80

60

Spartina
cynosuroides

100 150 200 250 300 350
Julian day 1993

Courtesy of Steve Long, University of Illinois



Geographic distribution of biomass

ORNL 2000-00566A/abh
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Annual precipitation

Annual Average Precipitation

United States of America

Legend (inches)
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Modeling performed by Christopher Daly
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[ 35t040 [ More than 180 sites. Sponsored by USDA-NRCS Water

and Climate Center, Portland, Oregon.
Period: 1961-1990
Oregon Climate Service

George Taylor, State Climatologist
(541) 737-5705




Comments

* Energy crops are expected to be
more environmentally benign than
production agriculture

- Low fertilizer and chemical inputs
- Late-harvest supports biodiversity
- Mixed cultures possible

- Many species can be used



Research goals for feedstock improvement

Minimize inputs
- Perennial energy crops
- Biotic and abiotic stress tolerance
Improve propagation
Maximize biomass yield
- Establish breeding tools
- Develop genetic maps
- Survey genetic diversity
- Establish orthology to models
Optimize composition
- Facile deconstruction A%
- Minimal inhibitor production Asian soy rust
- Maximal productivity




Economics of Perennials are Favorable

CROP Yield | Value | Cost | Profit
per Acre| $ $ $
Corn ($4.2/bu) [160bu [672 [193* |479
($150/1)
Switchgrass 10 tons |BO0 |138** | 362
($50/1)
Miscanthus 15 tons |750 |138** 612
($50/1)

*USDA economic research service 2004
**50% as much fertilizer, no chemicals




Conclusions

* Biofuels are expected be an important part
of a carbon neutral energy economy

* There are no insurmountable problems
* Many improvements are possible

» The revolution in mechanistic biology
offers enormous untapped potential to
make fundamental changes in solar
harvesting with plants



The Energy Bioscience Institute

* Partnership between UCB, UI, LBL
» BP has committed $500M over 10 years

- Goals include elimination of bottlenecks

to biofuels, development of improved
biotechnologies for fuel production, and
education of scientists and engineers
across the relevant disciplines

.
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=




The EBI has Goals Beyond Biofuels

. Global Socioeconomics |- 1
Syn Gas
Thermal Methanogens/
Treatment Others
Consolidated
Process
Sunlight | —— 2 Biomass )* Monomers 7 Fuels
FEEDSTOCK BIOMASS BIOFUELS
DEVELOPMENT DEPOLYMERIZATION PRODUCTION

Bioprocessing
& MEOR

Photosynthetic Coal/Oil

Fossil Fuel i
Microbes '




Research Complementarity
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Status

» BP & UCB in discussion about terms of
agreement, goal is completion by end
of July

+ Executive committee organizing
operational aspects

* Grant competition currently running,
expect to start funding research by
October



Goals of the EBI

» Envisioning the future

+ Identifying and solving the scientific and
technical problems required to enable the
development of a cellulosic biofuels industry

- Developing new biotechnologies for enhanced
oil recovery, fossil fuel processing &
biosequestration

» Educating scientists, policymakers, and the
public

* Training a new generation of students



EBI Funding

funds

BP Subsidiary

o

UC Berkeley BP
Host Institution Proprietary Componen

Lawrence Berkeley BP Components

National Laboratory

Other
University of lllinois Entities
Urbana-Champaign

ENERGY BIOSCIENCES INSTITUTE (EBI)




EBl Governance and Oversight

Governance Board Scientific Advisory
UCB Vice Chancellor for Research EBI Director, ex-officio Board

Strate gi C LBNL Director & Assoc Director EBI Assoc. Director, ex-officio

: UIUC Vice Chancellor - Research EBI Deputy Director, ex-officio
Science BP Reps (4)
Advisors

Executive Committee
] = EBI
DIRECTOR EBI ASSOC DIRECTOR
DEPUTY
DIRECTOR

Program Director

Program Director

Feedstock Development

Fossil Fuel Bioprocessing &
Carbon Sequestration

Program Director

Biomass Depolymerization

Program Director

Discover & Development
Support Centers

Program Director

Program Director

Biofuels Production

Socio-Economic Systems

Program Director
BP Team (1)

Program Director
BP Team (3)

Program Director
BP Team (2)




Implementing the program

» Open call for preproposals that address broad
goals

» Based on preproposals, PIs will be invited to
submit either a project or program proposal

- Suggestions from executive committee may be
attached.

- Projects will be defined term (EBI associates)

- Programs will be rolling 3 years with annual
reviews (EBI investigators)

* Proposals will be peer reviewed
+ EBI investigators will co-locate in EBI space
+ EBI associates will have participation obligations



"‘:..
- .'- -
’ E‘l“ S,

Unnversu’ry of. Callfor'nla at Berkeley -an




Helios building is at conceptual design
stage
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A vision of the Future

ORNL 98-746B/abh

Fuel/Power/
Heat and New
Bioproducits

Agricultural
Residues

i

http://genomicsgtl.energy.gov/biofuels/index.shtml



HISTORY OF US FEDERAL GOVERNMENT R & D
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2004 $/BARREL

Risks: Historical Price of Oil
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The 1.3 Billion Ton Biomass Scenario

Billion Barrel of Oil Equivalents

1.3 billion tons of Biomass-

U.S. Petroleum

Heating Value Equivalent

Yields Based on Mid-Term
Conversion Technology 20

1.9

Thermochemically Convert
Biochem Residues &
Forest Resources (0.5)

- Biochemically Convert
Non-Edible Carbohydrates (1.1)

— Near-Term Corn Without
Affecting Food Prices (0.3)

3.5

Production Levels

U.S. Ol
Production
- Max. 1970
U.S. Oil
Production
-2003

2003 U.S. Petroleum

2003
Imports

4.4

Consumption
6.4

Other
(Gasses,LPG,
Asphalt, etc.)

0.5 Jet Fuel

1.4 Distillate

2.7 - Gasoline
(3.0 Actual)

Based on ORNL & USDA Resource Assessment Study by Perlach et.al. (April 2005)
http://www.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf



